2017

Technical Reports

  1. Estrin, R., Orban, D., & Saunders, M. A. (2017). LSLQ: An Iterative Method for Linear Least-Squares with an Error Minimization Property (Cahier du GERAD No. G-2017-05). Montréal, QC, Canada: GERAD. doi:10.13140/RG.2.2.17818.64966

2016

Journal Articles

  1. Dehghani, A., Goffin, J.-L., & Orban, D. A Primal-Dual Regularized Interior-Point Method for Semidefinite Programming. Optimization Methods And Software, v(n), p–q. doi:10.1080/10556788.2016.1235708

Technical Reports

  1. Arreckx, S., Orban, D., & van Omme, N. (2016). NLP.py: An Object-Oriented Environment for Large-Scale Optimization (Cahier du GERAD No. G-2016-42). Montréal, QC, Canada: GERAD. doi:10.13140/RG.2.1.2846.6803
  2. Arreckx, S., & Orban, D. (2016). A Regularized Factorization-Free Method for Equality-Constrained Optimization (Cahier du GERAD No. G-2016-65). Montréal, QC, Canada: GERAD. doi:10.13140/RG.2.2.20368.00007
  3. Estrin, R., Orban, D., & Saunders, M. A. (2016). Estimates of the $2$-Norm Forward Error for SYMMLQ and CG (Cahier du GERAD No. G-2016-70). Montréal, QC, Canada: GERAD. doi:10.13140/RG.2.2.19581.77288

2015

Journal Articles

  1. Arreckx, S., Martins, J. R. R. A., Lambe, A., & Orban, D. (2016). A Matrix-Free Augmented Lagrangian Algorithm with Application to Large-Scale Structural Design Optimization. Optimization And Engineering, 17, 359–384. doi:10.1007/s11081-015-9287-9
  2. Orban, D., & Towhidi, M. (2016). Customizing the solution Process of COIN-OR’s Linear Solvers with Python. Mathematical Programming Computation, 8(4), 377–391. doi:10.1007/s12532-015-0094-2
  3. Gould, N. I. M., Orban, D., & Toint, P. L. (2015). CUTEst: a Constrained and Unconstrained Testing Environment with safe threads for Mathematical Optimization. Computational Optimization And Applications, 60, 545–557. doi:10.1007/s10589-014-9687-3
  4. Orban, D. (2015). Limited-Memory $LDL^T$ Factorization of Symmetric Quasi-Definite Matrices with Application to Constrained Optimization. Numerical Algorithms, 70(1), 9–41. doi:10.1007/s11075-014-9933-x

Conference Articles

  1. Gould, N. I. M., Orban, D., & Toint, P. L. (2015). An interior-point $\ell_1$-penalty method for nonlinear optimization. In M. Al-Baali, L. Grandinetti, & A. Purnama (Eds.), Recent Developments in Numerical Analysis and Optimization (Vol. 134, pp. 117–150). Switzerland: Springer. doi:10.1007/978-3-319-17689-5

Technical Reports

  1. Dussault, J.-P., & Orban, D. (2015). A Scalable Implementation of Adaptive Cubic Regularization Methods Using Shifted Linear Systems (Cahier du GERAD No. G-2015-109). Montréal, QC, Canada: GERAD.
  2. Orban, D. (2015). A Collection of Linear Systems Arising from Interior-Point Methods for Quadratic Optimization (Cahier du GERAD No. G-2015-117). Montréal, QC, Canada: GERAD.

2014

Journal Articles

  1. Greif, C., Moulding, E., & Orban, D. (2014). Bounds on the Eigenvalues of Matrices Arising from Interior-Point Methods. SIAM Journal On Optimization, 24(1), 49–83. doi:10.1137/120890600
  2. Audet, C., C.-K. Dang, & Orban, D. (2014). Optimization of Algorithms with OPAL. Mathematical Programming Computation, 6(3), 233–254. doi:10.1007/s12532-014-0067-x
  3. Gould, N. I. M., Orban, D., & Rees, T. (2014). Projected Krylov Methods for Saddle-Point Systems. SIAM Journal On Matrix Analysis and Applications, 35(4), 1329–1343. doi:10.1137/130916394

Technical Reports

  1. Orban, D. (2014). The Projected Golub-Kahan Process for Constrained Linear Least-Squares Problems (Cahier du GERAD No. G-2014-15). Montréal, QC, Canada: GERAD.

2013

Journal Articles

  1. Gould, N. I. M., Orban, D., & Robinson, D. (2013). Trajectory-Following Methods for Large-Scale Degenerate Convex Quadratic Programming. Mathematical Programming Computation, 5(2), 113–142. doi:10.1007/s12532-012-0050-3
  2. Harvey, J.-P., Chartrand, P., Eriksson, G., & Orban, D. (2013). Global minimization of the Gibbs energy of multicomponent systems Involving the presence of order/disorder phase transitions. American Journal Of Science, 313, 199–241. doi:10.2475/03.2013.02

Technical Reports

  1. Arioli, M., & Orban, D. (2013). Iterative Methods for Symmetric Quasi-Definite Linear Systems—Part I: Theory (Cahier du GERAD No. G-2013-32). Montréal, QC, Canada: GERAD.

2012

Journal Articles

  1. Armand, P., Benoist, J., & Orban, D. (2012). From Global to Local Convergence of Interior Methods for Nonlinear Optimization. Optimization Methods And Software, 28(5), 1051–1080. doi:10.1080/10556788.2012.668905
  2. Friedlander, M. P., & Orban, D. (2012). A Primal-Dual Regularized Interior-Point Method for Convex Quadratic Programs. Mathematical Programming Computation, 4(1), 71–107. doi:10.1007/s12532-012-0035-2
  3. Coulibaly, Z., & Orban, D. (2012). An $\ell_1$ Elastic Interior-Point Method for Mathematical Programs with Complementarity Constraints. SIAM Journal On Optimization, 22(1), 187–211. doi:10.1137/090777232
  4. Armand, P., & Orban, D. (2012). The Squared Slacks Transformation in Nonlinear Programming. Sultan Qaboos University Journal For Science, 17(1), 22–29.

Technical Reports

  1. Dehghani, A., Goffin, J.-L., & Orban, D. (2012). Solving Unconstrained Nonlinear Programs Using ACCPM (Cahier du GERAD No. G-2012-02). Montréal, QC, Canada: GERAD.

Miscellaneous

  1. Orban, D. (2013, December). Numerical Optimization in the Python Ecosystem. Montréal, QC, Canada: GERAD Newsletter.

2011

Journal Articles

  1. Audet, C., Dang, C.-K., & Orban, D. (2011). Efficient use of parallelism in algorithmic parameter optimization applications. Optimization Letters, 7(3), 421–433. doi:10.1007/s11590-011-0428-6

Technical Reports

  1. Orban, D. (2011). Templating and Automatic Code Generation for Performance with Python (Cahier du GERAD No. G-2011-30). Montréal, QC, Canada: GERAD.
  2. Ayotte-Sauvé, E., M. Chugunova, Cortes, B., Lina, A., A. Majumdar, Orban, D., … Zalzal, V. (2011). On Equidistant Points on a Curve (Activity Report). Montréal, QC, Canada: GERAD.

2010

Journal Articles

  1. Orban, D., Raymond, V., & Soumis, F. (2010). A New Version of the Improved Primal Simplex for Degenerate Linear Programs. Computers And Operations Research, 37(1), 91–98. doi:10.1016/j.cor.2009.03.020
  2. Fourer, R., Maheshwari, C., Neumaier, A., Orban, D., & Schichl, H. (2010). Convexity and Concavity Detection in Computational Graphs. INFORMS Journal On Computing, 22, 26–43. doi:10.1287/ijoc.1090.0321
  3. Fourer, R., & Orban, D. (2010). The DrAMPL Meta Solver for Optimization Problem Analysis. Computational Management Science, 7(4), 437–463. doi:10.1007/s10287-009-0101-z

Book Chapters

  1. Audet, C., C.-K. Dang, & Orban, D. (2010). Algorithmic Parameter Optimization of the DFO Method with the OPAL Framework. In K. Naono, K. Teranishi, J. Cavazos, & R. Suda (Eds.), Software Automatic Tuning: From Concepts to State-of-the-Art Results (first, pp. 255–274). New-York, NY: Springer. doi:10.1007/978-1-4419-6935-4

Conference Articles

  1. Harvey, J.-P., Chartrand, P., Eriksson, G., & Orban, D. (2010). Gibbs energy minimization challenges using implicit variables solution models. In TOFA: Discussion meeting on thermodynamics of alloys.

2009

Journal Articles

  1. Armand, P., Kiselev, A., Marcotte, O., & Orban, D. (2009). Self calibration of a pinhole camera. Mathematics-In-Industry Case Studies, 1, 81–98.

Technical Reports

  1. Orban, D. (2009). The Lightning AMPL Tutorial. A Guide for Nonlinear Optimization Users (Cahier du GERAD No. G-2009-66). Montréal, QC, Canada: GERAD.

2008

Journal Articles

  1. Armand, P., Benoist, J., & Orban, D. (2008). Dynamic Updates of the Barrier Parameter in Primal-Dual Methods for Nonlinear Programming. Computational Optimization And Applications, 41(1), 1–25. doi:10.1007/s10589-007-9095-z

Technical Reports

  1. Gould, N. I. M., Orban, D., & Toint, P. L. (2008). LANCELOT_SIMPLE: A Simple Interface for LANCELOT-B (Cahier du GERAD No. G-2008-11). Montréal, QC, Canada: GERAD.
  2. Orban, D. (2008). Projected Krylov Methods for Unsymmetric Augmented Systems (Cahier du GERAD No. G-2008-46). Montréal, QC, Canada: GERAD.

2006

Journal Articles

  1. Audet, C., & Orban, D. (2006). Finding Optimal Algorithmic Parameters Using the Mesh Adaptive Direct Search Algorithm. SIAM Journal On Optimization, 17(3), 642–664. doi:10.1137/040620886
  2. Waltz, R. A., Morales, J. L., Nocedal, J., & Orban, D. (2006). An interior algorithm for nonlinear optimization that combines line search and trust region steps. Mathematical Programming, 107(3), 391–408. doi:10.1007/s10107-004-0560-5

2005

Journal Articles

  1. Gould, N., Orban, D., & Toint, P. (2005). Numerical methods for large-scale nonlinear optimization. Acta Numerica, 14, 299–361. doi:10.1017/S0962492904000248
  2. Gould, N. I. M., Orban, D., Sartenaer, A., & Toint, P. L. (2005). Sensitivity of trust-region algorithms to their parameters. 4OR, 3(3), 227–241. doi:10.1007/s10288-005-0065-y

Conference Articles

  1. Menvielle, N., Goussard, Y., Orban, D., & Soulez, G. (2005). Reduction of Beam-Hardening Artifacts in X-Ray CT. In Engineering in Medicine and Biology Society, 2005. 27th Annual International Conference of the IEEE-EMBS 2005. (pp. 1865–1868). doi:10.1109/IEMBS.2005.1616814

2003

Journal Articles

  1. Gould, N. I. M., Orban, D., & Toint, P. L. (2003). CUTEr and SifDec: A Constrained and Unconstrained Testing Environment, Revisited. ACM Trans. Math. Softw., 29(4), 373–394. doi:10.1145/962437.962439
  2. Gould, N. I. M., Orban, D., & Toint, P. L. (2003). GALAHAD, a Library of Thread-safe Fortran 90 Packages for Large-scale Nonlinear Optimization. ACM Trans. Math. Softw., 29(4), 353–372. doi:10.1145/962437.962438

2002

Journal Articles

  1. Gould, N. I. M., Orban, D., Sartenaer, A., & Toint, P. L. (2002). Componentwise fast convergence in the solution of full-rank systems of nonlinear equations. Mathematical Programming, 92(3), 481–508. doi:10.1007/s101070100287
  2. Wright, S. J., & Orban, D. (2002). Properties of the Log-Barrier Function on Degenerate Nonlinear Programs. Mathematics Of Operations Research, 27(3), 585–613. doi:10.1287/moor.27.3.585.312

Technical Reports

  1. Gould, N. I. M., Orban, D., & Toint, P. L. (2002). Results from a Numerical Evaluation of LANCELOT B (Internal Report No. NAGIR-2002-1). Chilton, UK: Rutherford Appleton Laboratory.

2001

Journal Articles

  1. Gould, N. I. M., Orban, D., Sartenaer, A., & Philippe L. Toint. (2001). Superlinear Convergence of Primal-Dual Interior Point Algorithms for Nonlinear Programming. SIAM Journal On Optimization, 11(4), 974–1002. doi:10.1137/S1052623400370515

2000

Journal Articles

  1. Conn, A. R., Gould, N. I. M., Orban, D., & Toint, P. L. (2000). A primal-dual trust-region algorithm for non-convex nonlinear programming. Mathematical Programming, 87(2), 215–249. doi:10.1007/s101070050112